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Abstract

Moderate soil drying can cause a strong decrease in the soil‐root system

conductance. The resulting impact on root water uptake depends on the spatial

distribution of the altered conductance relatively to remaining soil water resources,

which is largely unknown. Here, we analyzed the vertical distribution of conductance

across root systems using a novel, noninvasive sensor technology on pot‐grown faba

bean and maize plants. Withholding water for 4 days strongly enhanced the vertical

gradient in soil water potential. Therefore, roots in upper and deeper soil layers were

affected differently: In drier, upper layers, root conductance decreased by

66%–72%, causing an amplification of the drop in leaf water potential. In wetter,

deeper layers, root conductance increased in maize but not in faba bean. The

consequently facilitated deep‐water uptake in maize contributed up to 21% of total

water uptake at the end of the measurement. Analysis of root length distributions

with MRI indicated that the locally increased conductance was mainly caused by an

increased intrinsic conductivity and not by additional root growth. Our findings show

that plants can partly compensate for a reduced root conductance in upper, drier soil

layers by locally increasing root conductivity in wetter layers, thereby improving

deep‐water uptake.
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1 | INTRODUCTION

Terrestrial plants exposed to drying soils suffer from a reduced water

potential which can lead to cell turgor loss (Bartlett et al., 2012),

hydraulic failure of xylem vessels (Urli et al., 2013) and impaired

phloem transport (Thompson, 2006). To mitigate this, plants close

stomata at the cost of reduced CO2 gain, up to carbon starvation

(McDowell, 2011). In the first place, the reduced plant water

potential is caused by the drop in soil water potential. However,

the plant water potential additionally depends on how the hydraulic

conductance of the root system is affected by soil drying (Bourbia

et al., 2021; Nobel & Cui, 1992; Rodriguez‐Dominguez &

Brodribb, 2020; Saliendra & Meinzer, 1989). In a recent study, we

showed that even moderate soil drying can induce an exponential
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decline of the total root system conductance (Müllers, Postma,

Poorter, & van Dusschoten, 2022). Considering the distribution along

the root system of such a net decline is crucial to understand its

impact on the plant water balance.

Soil drying is a highly nonuniform process and usually results in a

pronounced vertical gradient with relatively dry shallow soil layers and

relatively wet deep soil layers (Hillel et al., 1976; Kondo et al., 2000;

Markesteijn et al., 2010). Under such conditions, water in deeper layers

is much easier to extract, that is, a deep root requires a less negative

xylem water potential to realize a certain water uptake rate compared

with an otherwise identical shallow root. Following this rationale,

effectively using deep water resources is a key to withstand droughts

(Wasson et al., 2012). However, several studies emphasize that plants

often fail to do so and experience severe drought stress despite a

relatively highwater availability in deeper root zones (Gessler et al., 2022;

Passioura, 1983; Prechsl et al., 2015; Rasmussen et al., 2020). A major

reason is that the root conductance (Kroot, seeTable 1 for abbreviations)

in deeper layers usually is low since roots are less abundant (Haberle &

Svoboda, 2015; Kemper et al., 2020; Righes, 1980) and less conductive

compared with shallow roots (Dara et al., 2015; Müllers, Postma,

Poorter, Kochs, et al., 2022; Zarebanadkouki et al., 2013). Therefore, a

more effective acquisition of deep water would require to locally

increase root conductance over time. This can be achieved by increasing

root length via additional root growth in deeper layers, which has been

often observed upon soil drying (Alsina et al., 2011; Asseng et al., 1998;

Dubrovsky et al., 1998; Rodrigues et al., 1995; Sharp & Davies, 1985).

Nevertheless, as root hydraulic traits vary among individual roots and

entire root systems (Ahmed et al., 2016, 2018; Clément et al., 2022;

Müllers, Postma, Poorter, Kochs, et al., 2022; Rewald et al., 2012;

Steudle & Peterson, 1998), local root length only partly determines a

plant's ability to use deep water. Additionally, plants can increase the

intrinsic root conductivity (conductance per length) by, for example,

increasing the amount of active aquaporins (Johnson et al., 2014;

McLean et al., 2011).

While in deeper, wetter layers, increasing the root conductance

is a reasonable strategy for an effective water usage, it might be the

other way around in upper, drier soil layers. Unregulated water

uptake from drying soil can result in a severe water depletion zone

around the roots, strongly reduce the local soil conductivity, and thus

restrict water flow from the bulk soil towards the roots (Carminati &

Javaux, 2020). The drop of the local soil conductivity scales with the

water potential of the bulk soil and the water uptake rate per unit

root length. Therefore, locally decreasing root conductance, and thus

water uptake rates, in drier soil layers might be beneficial to avoid an

interruption of the hydraulic pathway between remaining water in

the bulk soil and the root surface. Mechanisms like enhanced root

suberization (Barrios‐Masias et al., 2015; Cruz et al., 1992; Lo Gullo

et al., 1998; North & Nobel, 1991), or reducing the amount of open

aquaporins (Martre et al., 2001; Rodríguez‐Gamir et al., 2019) enable

plants to reduce root hydraulic conductance during droughts.

Following these considerations, we analyzed how previously

measured changes in the total root system conductance (Müllers,

Postma, Poorter, & van Dusschoten, 2022) are distributed over depth.

TABLE 1 Abbreviations as used in the article.

Term Meaning Unit

h Soil matric potential cmH2O

Kcomp Compensatory root water uptake
conductance

mL h−1MPa−1

kh Soil hydraulic conductivity cm h−1

Kroot Radial root conductance mL h−1MPa−1

kroot Radial root conductivity mL h−1MPa−1 m−1

Ksat Soil hydraulic conductivity at water
saturation

cm h−1

KSL Hydraulic conductance between soil

and leaf

mL h−1MPa−1

Ksoil Soil hydraulic conductance mL h−1MPa−1

KSR Local soil‐root conductance mL h−1MPa−1

KSR, tot Total conductance of the soil‐root
system

mL h−1MPa−1

L Root length m

r0 Root radius cm

rb Radial distance from the root centre
defining the start of the bulk soil

cm

RWU Root water uptake rate mL h−1

SWaP Soil water profiler

UP Plant‐driven root water uptake

distribution with depth

mL cm−3 h−1

ÛP Normalized plant‐driven root water
uptake distribution with depth

US Soil driven root water uptake
redistribution

mL cm−3 h−1

US′ Hypothetical US for assuming no local
increases in Kroot

mL cm−3 h−1

Utot Total root water uptake rate mL h−1

V Soil volume cm3

zi Depth of soil layer i cm

α Inverse of the air entry pressure cmH2O
−1

θ Volumetric soil water content %

θ

t




Soil water depletion rate mL cm−3 h−1

λb Dimensionless pore size index of the
Brooks–Corey model

τ Brooks–Corey parameter with
τ = −2–3 λb

φ Matrix flux potential cm2 h−1

Ψcollar Water potential at the plant collar MPa

Ψleaf Leaf water potential MPa

Ψsoil Water potential in the bulk soil MPa

Ψseq Equivalent soil water potential MPa

Ψsr Water potential at the soil‐root interface MPa
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Although this spatial aspect is highly relevant for the plant water

balance, it has been poorly investigated. The few studies measuring a

spatial component of soil drying‐induced alterations of root hydraulic

traits used single roots, sampled at different depths (Johnson et al., 2014;

Wan et al., 1994). Additional information comes from studies on partial

root zone drying in which root hydraulic traits were either measured on

single, sampled roots (McLean et al., 2011) or entire root systems

divided into halves (Hu et al., 2011). These studies generally suggest that

the conductance of roots in rather wet soil increases relatively to that of

roots in rather dry soil. However, how the full vertical distributions of

root hydraulic conductance change in response to soil drying is

unknown, probably due to limitations in the available measurement

technologies. Here, we used a recently developed, highly precise soil

water sensor, called soil water profiler (SWaP; van Dusschoten

et al., 2020), to noninvasively measure root water uptake profiles which

reflect the distribution of root hydraulic conductance. We hypothesize

that the root conductance decreases in upper soil layers while it

increases in deeper layers as an early response to soil drying by means

of active regulation by the plant. Such a response would reduce water

stress by facilitating deep water usage and sustaining a hydraulic

connection to remaining water resources in drier layers. In Figure 1, the

hypothesized effect of soil drying on the spatial distribution of root

conductance is summarized. The hypothesis was tested on pot‐grown

faba bean and maize plants during 4 days of soil drying. These two

species were chosen because they differ in root system architecture,

and water uptake rates per unit root length. Faba bean has a taproot

system with comparably great water uptake rates per unit root length,

whereas maize has a fibrous root system with comparably low water

uptake rates per unit root length. Both factors potentially affect the

distribution of remaining soil water under drought, and thus the

resulting alterations of the local root conductance.

2 | MATERIALS AND METHODS

Data used in this study were obtained during an experiment

described previously in Müllers, Postma, Poorter, and van

Dusschoten (2022). Below, we shortly summarize the experimental

design and explain the determination of the distribution of root

conductance and root length in more detail.

2.1 | Experimental design

We germinated seeds of faba bean (Vicia faba, n = 10) and maize (Zea

mays, n = 10), and transferred them into soil‐filled PVC pipes (80% of

a loamy sand collected in Kaldenkirchen, Germany (Pohlmeier

et al., 2009), mixed with 20% coarse sand). PVC pipes had an inner

diameter of 8.1 cm and were filled to a height of 45 cm resulting in

2.32 L of soil substrate at a bulk dry density of 1.47 kg L−1. Plants

F IGURE 1 Hypothesized alterations of the spatial distribution of root hydraulic conductance (Kroot) in response to soil drying. Usually, soil
water content (θ) is reduced faster in upper than in deeper soil layers. Increasing the root conductance in deeper layers could facilitate deep
water uptake while a decreasing root conductance in upper layers might prevent an interruption of water flow from the bulk soil towards the
root surface.
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were grown in a climate chamber at a constant temperature of

21.5 ± 0.2°C and a VPDair of 1.49 kPa. We used a water‐cooled LED

panel (3200 K, 5 × 5 LEDs á 20W) for controlled illumination of the

plants. Light intensity alternated between a higher (1000 µmol m−2

s−1) and lower level (500 µmol m−2 s−1) in periods of 2 h. Each day,

four high and three low light periods were applied resulting in a total

of 14 h illumination and a daily light integral of 39.6 mol m−2 day−1.

The alternating light levels were required to determine root water

uptake profiles as described below. Plants were regularly watered

from the top to keep the average volumetric soil water content

around 20%. For fertilization, once a week an NPK nutrient salt

(Hakaphos Red; Compo Expert; 8% N, 12% P, 24% K), was diluted in

water at 0.3% (v/v) and used for watering. At an age between 4 and

5 weeks (thereby selecting for similar total plant water uptake rates),

plants were imaged with MRI and then placed into the SWaP for

continuous measurement of soil water profiles. From that moment

onwards, plants were not watered anymore. Simultaneously, leaf

water potential was continuously measured with a psychrometer (ICT

International). After 4 days, plants were imaged with MRI again.

2.2 | Determining the normalized distribution of
plant‐driven root water uptake rates

For the following analysis, we interpret the 45 cm high soil columns with

roots as 45 vertically stacked layers of 1 cm height. Layers are

numbered with i = 1, …, 45 from top to bottom. Upper boundary of

each layer is at depth zi = 0, …, 44 cm. The volumetric soil water content

(θ(zi)) in each layer was measured with the so‐called SWaP (van

Dusschoten et al., 2020). The SWaP is sensitive for the permittivity of

the soil which is determined by θ. Using a calibration curve, values

measured with the SWaP were converted to the local θ(zi). Sensors of

the SWaP were automatically moved along the pots with soil columns,

which allowed for measuring θ‐profiles in equidistant vertical steps of

1 cm every 15min. The SWaP measurements and required data

processing, is explained in more detail by van Dusschoten et al.

(2020), and Müllers, Postma, Poorter, Kochs, et al. (2022).

Using this methodology, we could derive the soil water depletion

rate ( )θ z t

t
i   

 for each individual soil layer. θ z t

t
i   


is determined by local

root water uptake rates (RWU(zi,t)) and redistributive soil water flow

(rSWF(zi, t)) between adjacent layers:

θ z t

t
z t z t

∂ ( )

∂
= RWU( , ) + rSWF( , )

i
i i


 (1)

Following the hydraulic model developed by Couvreur et al.

(2012), the distribution of RWU is determined by one term, solely

depending on the distribution of root hydraulic conductance, and a

second term additionally depending on vertical soil water gradients.

We call the first term plant‐driven root water uptake distributions (UP),

and the latter term soil‐driven root water uptake redistribution (US):

RWU z U z U z( ) = ( ) + ( ).i i iP S (2)

Under the hypothetical conditions of a uniform soil water

potential over depth, UP is equal to RWU. Across the whole pot, UP

integrates to the total root water uptake rate (Utot). US is a correction

term which is negative in relatively dry soil layers (local soil water

potential below pot average) and positive in relatively wet soil layers

(local soil water potential above pot average). Across the whole pot,

US integrates to zero. Using these definitions and summarizing US and

rSWF as soil water redistribution through soil and roots (SR), Equation

(1) writes:

θ z t

t
U z

U t

V
S z t

∂ ( , )

∂
= ˆ ( )∙

( )
+ ( , ).

i
i iP

tot
R (3)

In Equation (3) we used the normalized plant‐driven root water

uptake distribution (Û )P with U zˆ ( ) =i

U

UP
ziP( )

tot
and the total pot volume V.

Given a data set with varying Utot, ÛP, according to Equation (3), can

be derived by a linear regression between θ z t

t

∂ ( , )

∂
i and Utot if variations

in Utot and SR are independent. Decoupling of variation in Utot and SR

is achieved by the fluctuating light intensity in periods of 2 h.

Assuming that changes in the soil water distribution are negligible on

short time scales, a change in light intensity causes a rapid response

in Utot without affecting SR. Thus, for data measured during a

fluctuating light intensity, the slope of θ z t

t

∂ ( , )

∂
i (Utot) is ÛP. Since ÛP is

determined by the distribution of root conductance, this can be

understood as follows: The greater the root conductance in a specific

soil layer, the greater the change in the local soil water depletion rate

induced by a change in transpiration rate. The linear regression, and

thus determination of ÛP, was performed at each day separately,

covering data from 12 h of alternating light. Supporting Information:

Figure 1 shows the process of deriving ÛP profiles from the SWaP

data for an exemplary maize plant at Day 1 and Day 4 of the soil

drying period.

2.3 | Determining the distribution of soil water
potential

The soil matric potential (h) was calculated from θ values measured with

the SWaP, using a water retention curve, fitted with a Brooks–Corey

model. This water retention curve has been reported in Müllers, Postma,

Poorter, and van Dusschoten (2022). To obtain the distribution of soil

water potential (Ψsoil), h was corrected for gravity.

2.4 | Determining the distribution of root hydraulic
conductance

To derive the spatial distribution of root hydraulic conductance (Kroot), the

normalized ÛP, containing the spatial component of Kroot, needs to be

multiplied by the total conductance of the root system. Table 2 shows

data on Utot, leaf water potential (Ψleaf), the equivalent soil water potential

(Ψseq), and the resulting total conductance between soil and leaf (KSL)

separately averaged across each day of the measurement. A detailed

DEEP‐WATER UPTAKE UNDER DROUGHT | 2049
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analysis of these data, especially of the exponential decline in KSL in

response to soil drying, is provided by Müllers, Postma, Poorter, and van

Dusschoten (2022). In the present study, the data on KSL were used to

approximate the total conductance of the root system. For this, we

assumed that the axial conductance of the shoot between root system

and leaf is much greater than the total conductance of the soil‐root

system (KSR, tot). This assumption is justified in wet soil, where radial root

conductance is usually limiting water uptake (Frensch & Steudle, 1989;

Reid & Hutchison, 1986; Steudle & Peterson, 1998). During soil drying,

the axial shoot conductance can be reduced due to xylem embolism, and

thus become an important determinant of KSL. However, considerable

reduction of the axial conductance due to xylem embolism in maize were

measured at a soil water potential of −0.25MPa (Ryu et al., 2016), stem

water potential of −1.0MPa (Li et al., 2009) and leaf water potential of

−1.5MPa (Cochard, 2002). Comparable values of Ψleaf were not reached

in our measurements (Table 2), indicating that axial shoot conductance

was not limiting for a large part of the measurement, similar to the

findings of two recent studies (Corso et al., 2020; Rodríguez‐Gamir

et al., 2019). Therefore, we can approximate KSL by KSR, tot, and derive the

local soil‐root conductance (KSR) in each layer:

K z K U z( ) = ∙ ˆ ( ).i iSR SL P (4)

For an overview of the hydraulic network model and the

terminology used here, see Supporting Information: Figure 2. KSR is

composed of the local soil hydraulic conductance (Ksoil), and the local

root conductance (Kroot), connected in series. In Supporting Informa-

tion: Appendix 1, we explain two different methods to estimate the

hydraulic conductance of Ksoil. These estimations indicated that for a

large part of the measurement, Ksoil in each layer was much greater

than KSR (Supporting Information: Figure 3), and KSR was largely

determined by Kroot. Thus, Kroot can be reliably approximated by KSR,

as determined in Equation (4):

K z K U z( ) = ∙ ˆ ( ).i iroot SL P (5)

Supporting Information: Appendix 1 also provides a more

detailed discussion in Supporting Information: Figure 3 and the

resulting conclusions.

2.5 | Determining the distribution of root length
and root conductivity

Before and after the SWaP measurement, root length profiles of the

plants were determined noninvasively using MRI. The MRI setup

consisted of a 4.7 T vertical wide bore (310mm) magnet (Magnex)

and a gradient coil (ID 205mm; MR Solutions) generating gradients

up to 400mT/m, controlled with an MR Solutions console. We used

NMRooting software (van Dusschoten et al., 2016) to derive root

length profiles at a vertical stepped‐down resolution of 1 cm from the

MRI data. To estimate the root length distribution at each

intermediate day between the two MRI measurements, we applied

an exponential interpolation in each layer separately, assuming

exponential root growth during the 4 days. Since the MRI setup

has a detection limit of roots with diameter around 200–300 µm we

used correction factors to account for the distribution of fine roots.

These correction factors were derived in a previous experiment

comparing root length profiles measured with MRI and with scanning

of harvested roots (Müllers, Postma, Poorter, Kochs, et al., 2022).

Plants in that study and the present study were of the same age and

grown under similar conditions until the onset of water stress. Root

length profiles (L(zi)) were used to determine how the intrinsic root

hydraulic conductivity (conductance per root length, kroot) was

distributed along the root system:

k z
K z

L z
( ) =

( )

( )
.i

i

i
root

root (6)

TABLE 2 Total root water uptake rate (Utot), leaf water potential (Ψleaf), equivalent soil water potential (Ψseq), and the resulting, total
conductance between soil and leaf (KSL), averaged for each day of soil drying.

Faba bean Maize
Day Utot (mL h−1) Ψleaf (MPa) Utot (mL h−1) Ψleaf (MPa)

1 4.85 ± 0.41a −0.62 ± 0.05a 4.09 ± 0.58a −0.55 ± 0.05a

2 3.75 ± 0.70a −0.76 ± 0.04b 3.94 ± 0.77a −0.64 ± 0.14a

3 2.47 ± 0.42b −0.93 ± 0.07b 3.51 ± 0.54ab −0.71 ± 0.17a

4 1.64 ± 0.31c −1.11 ± 0.09c 3.10 ± 0.43b −1.05 ± 0.19b

Faba bean Maize
Day Ψseq (MPa) KSL (mL h−1MPa−1) Ψseq (MPa) KSL (mL h−1MPa−1)

1 −0.02 ± 0.01a 8.27 ± 1.12a −0.02 ± 0.00a 8.73 ± 4.07a

2 −0.04 ± 0.01b 5.15 ± 1.30b −0.03 ± 0.01b 6.55 ± 2.43a

3 −0.08 ± 0.02c 2.87 ± 0.56c −0.05 ± 0.01c 5.67 ± 2.21ab

4 −0.12 ± 0.03d 1.57 ± 0.37d −0.07 ± 0.03c 3.34 ± 1.45b

Note: Values are species medians with median absolute deviations.

2050 | MÜLLERS ET AL.
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In layers with both, small conductance and small root length this

calculation can lead to erratic results. Therefore, for determination of

kroot, we neglected soil layers with few roots (root length <1 cm) or

root conductance <0.001mL−1 hMPa−1.

2.6 | Statistical analysis

Generally, for data analysis of a certain parameter X, we considered

its median value (X̃ ) among replicates of each species. Variability

within the data set is given as median absolute deviation (MAD):

MAD X X= median(| − ̃ |),i (7)

with Xi being the measured values from each individual replicate. For

each species separately, we used Wilcoxon sign tests (matched pairs)

to test for statistically significant differences in each soil layer among

the 4 different days. The tested null‐hypothesis was that there are no

significant differences among the 4 days. If not stated differently,

significant differences refer to a p value of 0.05. To test for significant

differences between species, we used Mann–Whitney U tests. Both,

Wilcoxon tests and Mann–Whitney U tests were performed using the

SciPy‐package (Virtanen et al., 2020) in Python.

We used a log transformation of Equation (6) to quantify to what

extent measured changes in Kroot over time were associated with a

change in root length and to what extent with a change in root

conductivity:

K L kln ( ) = ln ( ) + ln ( ).root root (8)

Following the approach described by Poorter and Nagel (2000),

the relative contribution of a change in L to a change in Kroot (CL) was

calculated as:

C
K

L
=
Δ ln ( )

Δ ln ( )
.L

root (9)

In Equation (9), the difference Δ refers to the measured

differences between two points in time. The relative contribution

of a change in kroot (Ck) is then given as:

C C= 1 − .k L (10)

3 | RESULTS

Withholding water for 4 days resulted in a progressive, significant

reduction in both the soil water content (θ̄) and soil water potential

( Ψsoil) averaged over depth (Table 3). For both species, θ̄ decreased

from 16mL cm−3 at Day 1 to 8mL cm−3 at Day 4. Ψ̄soil decreased

from −0.01MPa at Day 1 to −0.09MPa (faba bean), and −0.07MPa

(maize) respectively, at Day 4.

Figure 2 shows how these reductions were distributed over depth.

At Day 1 after withholding water, for both species, there was a vertical

gradient in θ with drier soil layers in the top and wetter layers in the

bottom (Figure 2a,c). θ ranged from 12mL cm−3 (at 5 cm depth) to

20mL cm−3 (44 cm) for faba bean and from 12mL cm−3 (6 cm) to

23mL cm−3 (44 cm) for maize (Table 4). In each individual soil layer, θ

was significantly (p < 0.01) reduced from each day towards the next one

for both species. At Day 4, θ ranged from 5mL cm−3 (7 cm) to

11mL cm−3 (38) cm for faba bean and from 5mL cm−3 (5 cm) to

10mL cm−3 (38 cm) for maize. Like θ, Ψsoil in each individual soil layer

decreased significantly (p< 0.01) from each to the next day for both

species (Figure 2b,d). At Day 1, Ψsoil was almost uniformly distributed,

with only a slight vertical gradient (around −0.02MPa in the upper half

of the pot, and −0.01MPa in the lower half for both species). However,

proceeding soil drying led to an increase in the vertical gradient: At Day

4,Ψsoil ranged from −0.23MPa (at 7 cm depth) to −0.03MPa (38 cm) for

faba bean, and from −0.14MPa (5 cm) to −0.04MPa (38 cm) for maize.

In conclusion, although the vertical gradient in θ even decreased during

soil drying, the gradient in Ψsoil increased strongly. This is due to the

nonlinear character of the water retention curve: in the dry regime, a

small reduction in θ causes a strong reduction in Ψsoil.

In the next step, we analyzed how the changes inΨsoil affected root

water uptake patterns measured as the normalized plant‐driven root

water uptake distributions (ÛP), using the SWaP. At Day 1, for both

species there was a vertical gradient in ÛP with greater values in upper

soil layers and lower values in deeper layers (Figure 3). ÛP was not

constant over time: Generally, ÛP decreased in the drier, upper soil

layers, while it increased in relatively wetter, deeper layers. For the

parameters described below, in deeper layers we observed a consistent

trend from Days 1 to 3, reversing from Days 3 to 4. Therefore, we

primarily tested for significant differences between Days 1 and 3. As

indicated by a different background colour in Figure 3, we observed the

following significant changes: For faba bean, ÛP decreased in the top

8 cm (p < 0.01) and increased between 11 and 38 cm depth (p < 0.05 at

11–13 cm depth, <0.01 at 13–38 cm depth). For maize, ÛP decreased in

the top 10 cm (p< 0.05 at 10 cm depth, <0.001 else) and increased

below 20 cm depth (p< 0.05 at 20–23 cm depth, <0.01 below).

Alterations of ÛP are caused by a shift in the distribution of root

hydraulic conductance (Kroot). To derive the distribution of Kroot

over depth, we multiplied the daily average of the total conduct-

ance, as determined in a previous study (Müllers, Postma, Poorter, &

van Dusschoten, 2022) (Table 2), with the daily U zˆ ( )P , according to

TABLE 3 Volumetric soil water content and soil water potential
averaged over depth and across each day of the experiment.

Faba bean Maize
Day ̄ (%) soil (MPa) ̄ (%) soil (MPa)

1 16.1 ± 2.0a −0.01 ± 0.00a 16.0 ± 2.0a −0.01 ± 0.00a

2 12.9 ± 1.2b −0.03 ± 0.01b 13.4 ± 2.5b −0.02 ± 0.01b

3 9.9 ± 1.2c −0.06 ± 0.01c 10.7 ± 2.0c −0.04 ± 0.01c

4 8.0 ± 1.2d −0.09 ± 0.03d 7.8 ± 1.9d −0.07 ± 0.03d

Note: Values are species medians with median absolute deviation. For
each species separately, we tested for significant changes of each
parameter among the 4 days using Wilcoxon rank tests. Different letters
indicate significantly different values (p < 0.05).
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Equation (5). The total conductance at the 1st day was similar for

faba bean and maize (8–9mL h−1 MPa−1 Table 2). At Day 1, for both

species, there was a vertical gradient in Kroot with greater values in

upper soil layers (54% in the upper 10 cm for faba bean, 47% for

maize) and lower values in the bottom (13% in the bottom half for

faba bean, 21% for maize) (Figure 4). Withholding water for 4 days

resulted in a strong reduction of Kroot in upper soil layers with more

negative Ψsoil: For faba bean, Kroot significantly decreased from

F IGURE 2 Distribution of soil moisture parameters over depth during 4 days of soil drying. (a and c) Show volumetric soil water content (θ),
(b and d) show soil water potential (Ψsoil). Data points are median values among all faba bean (a and c) and maize (b and d) replicates (N = 10).
Error bars are median absolute deviations. A Wilcoxon rank test was used to test for significant differences among the 4 days of soil drying at
each depth separately. In each soil layer, both, θ and Ψsoil, decreased significantly between each of the 4 days.

TABLE 4 Maximal and minimal values of soil water content and soil water potential over depth, at each day of the measurement.

Faba bean Maize
Day θmin (%) θmax (%) θmin (%) θmax (%)

1 12.0 ± 3.1a 20.3 ± 4.0a 12.4 ± 2.1a 23.3 ± 6.8a

2 6.9 ± 1.2b 16.8 ± 3.2b 9.7 ± 2.9b 18.0 ± 5.1b

3 5.4 ± 0.7c 13.9 ± 1.7c 6.8 ± 1.9c 13.7 ± 4.3c

4 4.5 ± 0.7d 11.4 ± 2.0d 5.4 ± 1.6d 9.8 ± 3.1d

Faba bean Maize
Day Ψsoil, min (MPa) Ψsoil, max (MPa) Ψsoil, min (MPa) Ψsoil, max (MPa)

1 −0.02 ± 0.01a −0.01 ± 0.00a −0.02 ± 0.01a −0.01 ± 0.00a

2 −0.09 ± 0.03b −0.01 ± 0.00b −0.04 ± 0.02b −0.01 ± 0.01b

3 −0.15 ± 0.05c −0.02 ± 0.00c −0.09 ± 0.05c −0.02 ± 0.01c

4 −0.23 ± 0.08d −0.03 ± 0.01d −0.14 ± 0.10d −0.04 ± 0.03d

Note: Values are species medians with median absolute deviation. For each species separately, we tested for significant changes of each parameter among
the 4 days using Wilcoxon rank tests. Different letters indicate significantly different values (p < 0.05).

2052 | MÜLLERS ET AL.

 13653040, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pce.14587 by Forschungszentrum

 Jülich G
m

bH
 R

esearch C
enter, W

iley O
nline L

ibrary on [27/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Days 1 to 3 in the entire upper half of the pot (p < 0.01) by, on

average, 72% (Figure 4a). In the lower half, Kroot did not change

significantly. For maize, Kroot significantly decreased from Days 1

to 3 in the upper 16 cm of the pot (p < 0.01 above 12 cm depth,

<0.05 else) by, on average, 66% (Figure 4b). However, between a

depth of 31 and 41 cm, Kroot increased significantly (p < 0.01 at

35–37 cm depth, <0.05 else) by, on average, 107% (Figure 4c). With

proceeding soil drying from Days 3 to 4, Kroot decreased again in

these layers, such that it was not significantly different compared

with Day 1.

The temporarily increased Kroot in deeper parts of the maize root

systems supports the uptake of deep soil water resources. We

estimated the relevance of this facilitated deep water uptake by

calculating how much it contributed to the total root water uptake

(Figure 5). For maize, the measured increases in Kroot contributed 5% to

the total root water uptake rate at Day 2, 11% at Day 3, and 21% at Day

4. In different words, without the enhanced Kroot, only 80% of the

measured water uptake rate might have been realized at Day 4. Note

that the hypothetical uptake rates (grey bars in Figure 5) were calculated

by setting all measured increases in Kroot to zero and assuming that this

would not affect the leaf water potential, implying a strict stomatal

control of the plant water status. More realistically, a lack of the

increases in Kroot would not be fully reflected in a reduction in total

water uptake rate, but also partially in leaf water potential. However,

mitigation of both, the drop in total root water uptake rate and in leaf

water potential comes with reduced plant water stress. For faba bean,

measured increases in Kroot at each day contributed significantly less to

the total root water uptake rate compared with maize (p< 0.05).

The determination of Kroot, along with the associated increases in

deeper layers for maize (Figures 4 and 5), are based on a correct

separation of UP and US by the SWaP measurements (Equations 1–3).

Otherwise, the local increases might also be explained by an altered

soil water distribution and the resulting compensated root water

uptake. Although theoretically, UP and US were separated using the

fluctuating light intensity, we evaluated the potential effect of

compensated root water uptake on UP by comparing the changes in

UP and US between Days 1 and 3 in deeper layers for maize

(Supporting Information: Appendix 2 and Figure 4). Below 20 cm

depth, the measured UP increased between Days 1 and 3 (Supporting

Information: Figure 4A,D). Below 30 cm depth, this increase was of

the order of 0.2 mL h−1 (Supporting Information: Figure 4C,F). At the

same time, the estimated US also increased in these layers

(Supporting Information: Figure 4B,E) indicating enhanced compen-

sated root water uptake. However, US at Day 3 was only of the order

of 0.02m h−1, and thus a factor 10 smaller than the increase in UP.

Calculation of US assuming no local increases in Kroot (US′,

see Supporting Information: Appendix 2) gave even smaller values

(Supporting Information: Figure 4B,E). In conclusion, even if UP and

F IGURE 3 Normalized plant‐driven root water uptake distribution (ÛP) over depth during 4 days of soil drying. Data points are median values
among all faba bean (a) and maize (b) replicates (N = 10). Error bars are median absolute deviations. Background colour in each layer indicates a
significant decrease (pink), increase (blue), or no significant change (yellow) between Days 1 and 3, tested with aWilcoxon rank test. Days 1 and
3 were chosen as reference points, because the parameters analyzed below showed a consistent trend within this period.
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US were not separated correctly by our approach, contribution of US

to the increased UP in deeper layers was marginal, such that the

increase in Kroot (Figures 4 and 5) remained.

We analyzed whether the locally enhanced Kroot in maize was

caused by additional root growth or an increase in root conductivity

(conductance per length, kroot). Root length distributions at each day

were derived from MRI images before and after the 4 days, making

use of exponentially interpolating the data (Figure 6a–c). Then we

derived kroot profiles at each day by dividing Kroot by the root length

distributions (Figure 6d–f). Initially, faba bean roots had a much

greater conductivity (0.19mL h−1MPa−1 m−1 on average over depth)

than maize roots (0.05 mL h−1MPa−1 m−1 on average over depth).

Like for the other parameters analyzed above, at Day 1, there was a

vertical gradient in kroot. Shallow roots of both species had a greater

conductivity than deeper roots. Withholding water for 4 days

resulted in a decreasing kroot of shallow roots, in the faster drying,

upper soil layers. In faba bean, kroot decreased significantly from Days

1 to 3 in the upper 29 cm of the pot (p < 0.01) by, on average, 76%

(Figure 6d). Below 30 cm, kroot remained mostly constant. In maize,

kroot decreased significantly from Days 1 to 3 in the upper 15 cm of

the pot (p < 0.01 above 12 cm depth, <0.05 else) by, on average, 66%

(Figure 6e). Between a depth of 27 and 35 cm, however, kroot

increased significantly (p < 0.05) by up to 81% (Figure 6f). Like Kroot,

kroot from Days 3 to 4 decreased again in these layers. Distributions

of kroot for each individual maize plant during the 4 days are shown in

Supporting Information: Figure 5. For each plant, there were local

increases in kroot, indicated by green dots, during the 4 days. The

depth and day at which these increases occurred, however, varied

strongly among the different replicates, causing the limited signifi-

cance observed in Figure 6e. Using Equations (8–10), we calculated

how much changes in root length, and kroot contributed to the

significantly increased Kroot at 31–41 cm depth for maize (Table 5). In

each of these soil layers, the increase in Kroot was primarily caused by

an increase in kroot (relative contribution >0.75 in 8 out of 10 layers).

Note that in some layers, root length even decreased slightly, causing

the negative values for the contribution of root length and values >1

for the contribution of root conductivity in Table 5.

4 | DISCUSSION

The spatial distributions of root hydraulic traits and how they are

affected by soil drying has important implications for the plant water

balance. The strong reduction of soil water potential in upper soil

layers led to a significant reduction of the local root hydraulic

conductance. In maize, this was partly compensated by an increased

conductivity (conductance per length) in deep roots. This enabled

plants to maintain an estimated 20% greater total water uptake rate

compared with a scenario without local increases in root

conductance.

F IGURE 4 Distribution of root conductance (Kroot) over depth during 4 days of soil drying. Data points are median values among all faba bean
(a) and maize (b) replicates (N = 10). Error bars are median absolute deviations. Significant differences between Days 1 and 3 in each layer are
indicated by the background colour, analogue to Figure 3. (c) Shows a magnification of (b) for layers with a significantly increasing Kroot between Days
1 and 3. Values next to data points are percentage increases compared with Day 1.
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Initially, root conductance in upper soil layers was much greater

(87% in upper half of the pot for faba bean, 79% for maize) than in

deeper soil layers (Figure 4). This is typical for well‐watered

conditions since shallow roots are usually more abundant (Haberle

& Svoboda, 2015; Kemper et al., 2020; Righes, 1980) and more

conductive than deeper roots (Dara et al., 2015; Müllers, Postma,

Poorter, Kochs, et al., 2022; Zarebanadkouki et al., 2013). Conse-

quently, withholding water resulted in a considerable vertical

gradient in soil water potential with more negative values in the

top and less negative values in the bottom (Figure 2). In response to

soil drying, we observed a significant decrease in Kroot in upper,

relatively dry soil layers for both species (Figure 4). One plausible

reason for this decrease is a partial loss of soil root contact due to

root shrinkage, which was shown to be initiated at a soil water

potential of around −0.02MPa for faba bean (Koebernick et al., 2018)

and maize (Duddek et al., 2022). Therefore, in upper soil layers, the

relatively low (more negative)Ψsoil might have induced root shrinkage

in our study, resulting in the observed reduction in Kroot, whereas in

deeper layers, Ψsoil was still sufficiently high (less negative). Never-

theless, the critical Ψsoil at which we observed significant reductions

in Kroot was around −0.04MPa (compare Figures 2 and 4), and thus

slightly more negative than reported by the two studies mentioned

above. Besides a loss of soil‐root contact, Kroot can also decrease due

to enhanced root suberization and reducing the amount of active

aquaporins, two mechanisms which are under biological control of

the plant. Soil drying reportedly led to a decreased expression of

aquaporin genes in shallow roots (Johnson et al., 2014), and an

enhanced suberization of, especially, basal root parts (Kreszies

et al., 2019) which predominantly reside in the top soil. Both

processes might have contributed to the observed reduction in Kroot

in upper soil layers (Figure 4).

We assumed that the soil conductance was much greater than

the root conductance to approximate Kroot by KSL (Equations 4 and 5).

Estimations of Ksoil (Supporting Information: Appendix 1) showed that

this approximation was justified for a large part of the measurement

(Supporting Information: Figure 3). Only in upper soil layers for faba

bean at Day 4, Ksoil was of the same order of magnitude as Kroot

(Supporting Information: Figure 3I). There, up to 8% of the decline in

Kroot from Days 3 to 4 as shown in Figure 4 were caused by a

reduction in Ksoil. Nevertheless, this effect was of minor importance,

as Kroot was already reduced by 72% on average between Days 1

and 3 in the upper half of the pot.

Theoretically, unregulated water uptake from drying soils can

lead to steep water potential gradients in the soil around roots and

F IGURE 5 Effect of increases in root conductance on the total root water uptake rate (Utot) during 4 days of soil drying. Grey bars are
hypothetical uptake rates, calculated by setting all measured local increases in Kroot to zero. Blue parts of the bars are the fractions of total water
uptake rates attributed to the measured increases in Kroot. Blue values give the relative contribution of these fractions to the measured uptake
rates. Total water uptake rates are the temporal averages across the illuminated period at each day. Height of the error bars are medians among
faba bean (a) and maize (b) replicates, error bars are median absolute deviations (N = 10).
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F IGURE 6 Distribution of root length and root conductivity (conductance per root length, kroot) over depth during 4 days of soil drying.
Example, MRI images show the root system of a faba bean and maize plant at the first and last day of the measurement (a). Pseudo colours
indicate root diameter with the colour bar ranging from 0mm (blue) to 1.5 mm (red). Root length distribution over depth for faba bean (b) and
maize (c) were derived from the MRI images. Data points are median values, error bars are median absolute deviations. Significant differences
between Days 1 and 4 in each layer are indicated by the background colour, analogue to Figure 3. The distributions of kroot over depth (d and e)
were derived by dividing Kroot as shown in Figure 4 by the root length distributions. (f) Shows a magnification of (e) for layers with a significantly
increasing kroot between Days 1 and 3. Values next to data points are percentage changes compared with Day 1.
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thus interrupt the hydraulic pathway from the bulk soil towards the

roots, and force stomatal closure (Carminati & Javaux, 2020). Our

estimations of the water potential at the root surface (Supporting

Information: Figure 3A,C) emphasize that such a severe water

depletion zone did not occur during the measurements presented

here. Most likely, the early local reduction in Kroot, due to the

mechanisms discussed above, and the resulting stomatal closure,

could prevent an incisive drop in the local Ksoil. These conclusions on

the effect of Ksoil initially apply only to the soil type used in this study,

a loamy sand. In this context, a recent study showed that the total

conductance between soil and plant decreased at a less negativeΨsoil

in a sandy soil compared with loamy soil, probably because the loamy

soil sustained a greater conductivity at a given Ψsoil (Cai et al., 2022).

Additionally, the effect of a reduced soil‐root contact depends on soil

texture, and might be more pronounced in the loamy sand used here,

compared with a sandy soil (Carminati et al., 2009).

Despite the potential benefit of preventing a severe water

depletion zone around the roots, the strong reduction in Kroot in

upper soil layers (76% reduction in faba bean, 66% reduction in maize

[Figure 4]) comes with different impairments for the plant: A

reduction in Kroot hampers the hydraulic redistribution of soil water

from relatively wetter towards relatively drier soil layers through the

roots (Neumann & Cardon, 2012). Moreover, as demonstrated in a

previous study, the reduction in Kroot amplifies the drop in plant

water potential (Müllers, Postma, Poorter, & van Dusschoten, 2022).

One possibility to partly compensate for this is deep‐water uptake.

Up until Day 3, water in the bottom third of the pots was much easier

to access (Ψsoil less negative than −0.03MPa) than water in shallow

soil layers (Ψsoil locally as low as −0.15MPa [faba bean] and

−0.08MPa [maize] [Figure 2]). However, in agreement with other

studies (Clément et al., 2022; Dara et al., 2015; Zarebanadkouki

et al., 2013), effectively taking up deep water was initially limited by a

low local Kroot (Figure 4). With proceeding soil drying, maize, but not

faba bean was able to significantly increase Kroot in deeper,

comparably wet soil layers. The deep‐water uptake, facilitated in

this way, contributed up to 20% to the total root water uptake rate

in maize (Figure 5) and thus, at least temporarily, alleviated the drop

in plant water potential.

Deep‐water uptake under drought can increase due to a local

increase in root conductance, but also due to compensated root water

uptake, quantified as US. This happens when the local Ψsoil drops less

than the global Ψseq which was the case in deeper soil layers in our

study (compare Figure 2 and Table 2). Theoretically, we had separated

UP and US using the fluctuating light intensity which, on short time

scales, only changes UP but not US. To not fully rely on the success of

this separation, we additionally estimated which impact it had for our

conclusions on Kroot if compensated water uptake had influenced the

measured UP (Supporting Information: Appendix 2). Since the estimated

US at Day 3 in deeper layers in maize was a factor 10 smaller than the

measured increase in UP (Supporting Information: Figure 4), we conclude

that the measured local increases in Kroot largely remained, even if the

separation of UP and US had failed.

Normalization by root length indicated that the increase in Kroot

was mainly caused by a significantly increased root conductivity

(conductance per length) (Figure 6). One potential reason for this

phenomenon is directed, enhanced aquaporin gene expression, as

observed by Johnson et al. (2014) or McLean et al. (2011). By relating

empirical data on Ψsoil, ABA concentration in roots, and its impact on

aquaporin expression, Couvreur et al. (2015) estimated a 250%

increase in kroot between a local Ψsoil of −0.005 and −0.1MPa. This

effect would lead to a net increase in kroot as long as it is not

outweighed by a reduced soil‐root contact and other forementioned

processes reducing kroot. The fact that increases in kroot only occurred

above a Ψsoil of −0.04MPa in our study (compare Figures 2 and 6e,f)

fits these considerations. Furthermore, the different abilities of faba

bean and maize to increase Kroot might be explained by root aquaporin

regulation as well: Under nonstressed conditions, radial water uptake

in bean occurs predominantly via the cell‐to‐cell pathway, mediated by

aquaporins, whereas in maize, the apoplastic pathway contributes

considerably (Javot & Maurel, 2002; Steudle & Brinckmann, 1989;

Steudle & Frensch, 1989). This fits the initially greater conductivity of

faba bean roots compared to maize roots (Figure 6a,b at Day 1). To

compensate this, maize had a greater root length (Figure 6b,c), thus

achieving a similar initial conductance (compare Figure 4a and 4b at

Day 1) with a greater flexibility and potential for local increases via a

facilitated cell‐to‐cell water transport.

However, the observed increase in kroot could have also been

caused by xylem maturation. As summarized by M. McCully (1995),

maturation of the late metaxylem can occur far behind the root tip

(up to 10–50 cm) for various species, including maize (St. Aubin

et al., 1986) and soybean (M.E. McCully, 1994). Since maturation of

TABLE 5 Contribution of changes in root length and
conductivity to the significant increase in maize root conductance
between Days 1 and 3 at 31–41 cm depth as shown in Figure 4c.

Depth (cm)
Relative contribution
root length

Relative contribution
conductivity

31 −0.09 ± 0.31 1.09 ± 0.31

32 −0.05 ± 0.39 1.05 ± 0.39

33 −0.02 ± 0.48 1.02 ± 0.48

34 −0.00 ± 0.49 1.00 ± 0.49

35 0.08 ± 0.45 0.92 ± 0.45

36 0.38 ± 0.40 0.62 ± 0.40

37 0.41 ± 0.44 0.59 ± 0.44

38 0.22 ± 0.40 0.78 ± 0.40

39 0.15 ± 0.50 0.85 ± 0.50

40 0.20 ± 0.54 0.80 ± 0.54

41 0.24 ± 0.56 0.76 ± 0.56

Note: Data were calculated using the log‐transformed differences
between Days 1 and 3. Values are median values with median absolute

deviations. Values <0 for the contribution of root length (and >1 for the
contribution of conductivity) are caused by a decrease in root length
between the two points in time.

DEEP‐WATER UPTAKE UNDER DROUGHT | 2057

 13653040, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/pce.14587 by Forschungszentrum

 Jülich G
m

bH
 R

esearch C
enter, W

iley O
nline L

ibrary on [27/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the metaxylem results in an increase in axial conductivity, the

measured increase in kroot in maize possibly reflects the development

of xylem vessels. This would imply that the axial conductivity had

initially limited root water uptake in deeper soil layers, as suggested

by previous studies (Clément et al., 2022; Sanderson et al., 1988;

Strock et al., 2021). However, the strong increase in local kroot (up to

82%) indicates a simultaneous response of all roots of various growth

stages within the respective soil layers, rather than a continuous

developmental process. Additionally, Steudle & Peterson (1998)

reported for maize that even though the late metaxylem is not fully

developed within 25 cm from the root tip, axial conductance is orders

of magnitude greater than radial conductance, except for a small

apical region without developed early metaxylem. We conclude that

an increased amount of active aquaporins is a plausible explanation

for the measured local increases in kroot, which could have been

enhanced by other mechanisms, such as xylem development.

5 | CONCLUSION

We analyzed the effect of soil drying on vertical profiles of root

hydraulic conductance in faba bean and maize. Withholding water for

4 days resulted in a pronounced vertical gradient in soil water

potential with drier layers in the top and wetter layers in the bottom.

In drier, shallow soil layers, the reduced soil water potential caused a

strong decrease in root conductance, which on the one hand

prevented a severe drop in soil hydraulic conductivity around the

roots, on the other hand amplified water stress and forced stomatal

closure. To partly compensate for this, maize, in contrast to faba

bean, was able to facilitate deep water uptake by locally increasing its

root conductivity. This increase improved the overall water uptake

rate, and thus is an effective plant strategy to reduce water stress

during soil drying.
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